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Abstract
This paper presents an automatic sensor placement
technique for robot vision in inspection tasks. In such
vision systems, a sensor often needs to be moved from one
pose to another around the object to sample all features of
interest. Multiple 3D images are taken from different
vantage points. The technique involves deciding the
optimal sensor placements and a shortest path through
these viewpoints for automatic generation of an inspection
plan. A viewpoint is expressed by N parameters and a
topology of viewpoints is achieved by genetic algorithm.
The inspection plan is evaluated using a min-max criterion
and the shortest path is determined by Christofides
algorithm. In addition, a computation example is
presented to illustrate the techniques and algorithms.

1. Introduction

    With the rapid growth of automation in the
manufacturing industry, computer vision now plays an
important role for inspection, assembly, recognition and
reverse engineering, etc. Since a vision sensor can only
sample a portion of an object from a single viewpoint,
multiple 3D images need to be taken and integrated from
different vantage points to enable all features of interest to
be measured. Sensor placement thus plays a significant
role in achieving an economic planning strategy, which
determines the subsequent viewpoints and offers the
obvious benefit of reducing and eliminating the labor
required.
    Sensor placement has been studied for more than ten
years. It can be classified into two application categories,
model based and non-model based. Typical non-model
based application is 3D object reconstruction ([1, 2, 3, 4])
and model based applications are widely used in
inspection, recognition, and assembly etc. ([5, 6, 7, 8, 9]).
Previous approaches to sensor placement are mainly
focused on modeling of sensor constraints and calculating
a "good" viewpoint to observe one or several features on
the object. It is usually not considered to achieve the
overall efficiency of a generated task with a sequence of
viewpoints. This paper is dedicated to developing a robust
method for planning inspection tasks with both viewpoint

topology and sensing sequence. In such tasks, the
procedure of plan generation is described as:
(a) Input the object's geometrical information from CAD

models;
(b) Given the specifications of the inspection tasks;
(c) Generate a sensor placement graph with least

viewpoints;
(d) Search a shortest path for robot operation; and
(e) Output the inspection plan.
    In a word, the problem of sensor placement for
inspection is to search an optimal topology of placement
graph and a shortest path for performing the sensing
operations. In this paper, the geometrical information of
the object is loaded from a 3-D CAD data file. A strategy
is developed to automatically determine a group of
viewpoints for a specified vision-sensor with several
placement parameters such as position, orientation, and
optical settings. Each viewpoint should satisfy many
constraints due to some physical and optical properties of
the sensor, scene occlusion, and robot reachability in the
environment. The sensing plan is evaluated by a min-max
criterion, which is achieved by a hierarchical genetic
algorithm (HGA), and the shortest path for robot moving
through the viewpoints is determined by Christofides
algorithm. Combining the two algorithms will give a
complete solution of the model-based sensor placement
problem.

2. Cost Evaluation of Sensor Placement Plan

2.1 Previous Approaches
    In most related work, limitations of sensor placement
are expressed as a cost function with the aim to reach the
goal with minimal cost. This cost function should have a
value tending to infinity associated to the direction of a
pose that the sensor cannot assume and a unitary value
associated to the direction of a pose that is possible for the
sensor to assume [5].
    Banta etc. [3] defined the term "best-next-view" (BNV)
as the next sensor pose which will acquire the greatest
amount of previously unseen three-dimensional
information.
    [6] [9] chose to formulate the probing strategy as a
function minimization problem. The optimization function
is taken to be a weighted sum of several component
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criteria, each of which characterizes the quality of the
solution with respect to each associated requirement
separately. Thus the optimization function is written as:

)max( 44332211 ggggh αααα +++=        (1)

subject to gi≥0, standing for satisfying four constraints, i.e.
resolution, focus, field-of-view, and visibility. (In this
section the equations are not be explained in detail because
of the limitation of space, interested readers please refer to
original source).
    In [1], the strategy of viewpoint selection takes into
account three problems: quality of a new position,
displacement cost, and additional constraints. More
precisely, it includes: 1) the new observed area volume

)( 1+tG φ , 2) the cost function F in order to reduce the total

camera displacement ),( 1+ttC φφ , and 3) constraints to
avoid unreachable viewpoints and to avoid positions near
the robot joint limits )(φB . The cost function Fnext to be
minimized is thus defined as a weighted sum of the
different measures:

)(),()()()( 312111 φφφφφφ BaCagaAF tttt +++= +++ . (2)

    [2] evaluate the suitability of all potential viewpoints of
the NBV by using a rating function as

),(),(),(),( φθφθφθφθ εε ssoo fwfwfwf ++=   (3)

where θ and φ are two parameters on the viewpoint sphere;
fe, fo, fs are factor functions rating on some physical or
heuristic constraints, and we, wo, ws are weighting
coefficients. The viewpoint of the largest value of f(θ,φ)
will be chosen as the NBV.
    Ye et al. [8] addressed that the total cost for applying the
searching effort allocation is:
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where the cost to(f) gives the total time needed to
manipulate the hardware to the status specified by f , to
take a picture, to update the environment and register the
space, and to run the recognition algorithm. The effort
allocation F={f1, ..., fk} gives the ordered set of operations
applied in the search. And the probability of detecting the
target by the allocation is:
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where P(f) is the probability of detecting the target.
    Then the next action is selected that maximizes the term
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    Triggs et al [4] gave a method of the function
optimization technique to minimize their viewpoint
evaluation function. They divide the search space into a set
of local regions and build a probabilistic function
interpolation or subjective probability distribution for the
function value. These distributions can be used to choose
which region to refine and where to subdivide it. The goal
is to optimize the function, so a sample only "succeeds" if
it improves on the best currently known function value
fbest. If the probability density for the function value at
some point is p(f)df, the expected gain or improvement to
fbest from a sample placed at that point is

∫ ∞−
−>=< bestf

best dffpffgain )()(                      (7)

    We may find that all these previous methods for solving
sensor placement problem are with straight-forward
representations. They determine that if a viewpoint is
admissible in the space by direct computation. However,
the large computation complexity results in a heavy
burden to the vision system because there are so many
constraints should be satisfied. Therefore these methods
usually can not give an efficient solution for a general task.
In this paper, we also minimize the cost, but by
evolutionary computing, so that it is robust for treating
with many different vision tasks and the objects and sensor
parameters can be given by the user just at the beginning
of computation. Furthermore, a shortest path for robot
execution is also suggested by graph theory.

2.2 Lowest Travelling Cost
    In this paper, considering there is a priori model of the
object, the procedure for generating a sensor placement
plane is described as:
(a) Generate a number of viewpoints.
(b) Construct a graph corresponding to the topology of

viewpoints. If it satisfies all placement constraints, go
to step (d); else increase the number of viewpoints.

(c) Reduce redundant viewpoints.
(d) Compute the lowest cost to optimize robot operations.
    Generating a large number of viewpoints will most
likely satisfy all constraints and finish the vision task, but
it will also increase the cost. To achieve an optimal
solution, we need eliminate all possible redundant
viewpoints. Fig. 1 illustrates that the 2nd viewpoint is
redundant because it does not increase any information of
the object model.

  Fig. 1  A redundant viewpoint

1 2 3
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    A plan of viewpoints is mapped into a graph
),),(),(( EG wGEGVG ψ=  with weight w on every edge

E, where vertices Vi represent viewpoints. Edge Eij

represent a shortest collision-free path between viewpoint
Vi and Vj, and weight wij represent its corresponding
distance. Such a graph is termed as sensor placement
graph G in this paper.
    Fig. 2 illustrates an example topology of viewpoint plan.
A practical solution of sensor placement problem must
provide the exact number of viewpoints which are
reachable to the robot and there must exist a collision free
path between every two acceptable viewpoints.
    A sensor placement graph G has characteristics:
(a) G is a simple undirected graph, i.e. there are no loops

and no paralleled edges;
(b) G is a connected graph, i.e. there exists at least one

path from vertex Vi to Vj;
(c) G is a complete weighted graph, i.e. every pair of

vertices Vi and Vj is directly connected with a weight;
(d) G is a finite nontrivial graph, i.e. ∞<∂< )(),(1 GGo ;
(e) The order and the size of G are o(G) = n,

)1(
2
1

)( −=∂ nnG , respectively;

    The shortest path for taking all views is a Hamilton
cycle which is a sequence of vertices: C=(x1, x2, …, xn, x1)
where ],1[),(, niGVxixjxi ∈∈≠ . The path length is
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    If we consider the time consumed by a viewpoint plan,
it may include:
(a) n*t1 - time needed to acquire a view and transfer it to a

3D local model, including image digitalization, image
preprocessing, 3D surface reconstruction, etc.

(b) n*t2 - time for fusion and registration. Merge the local
model with previous partial model.

(c) t3 - time needed to perform the strategy of viewpoints
planning. A plan of viewpoints and optical settings of
the sensor are determined and a path is generated for
the robot moving to the next pose.

(d) t4 - time needed for the robot to perform the task of
moving from one viewpoint to another.

    Here t3 is subject to the following constraints: (‘≥’
means the constraint condition is satisfied.)
                 g1≥0  (resolution)
AND g2≥0  (in-focus)
AND g3≥0  (field of view)
AND g4≥0  (visibility)
AND g5≥0  (viewing angle)
AND g6≥0  (overlap)
AND g7≥0  (occlusion)
AND g8≥0  (image quality)
AND g9≥0  (kinematic reachability of sensor pose)

    If n viewpoints of image acquisition are needed to finish
the task, the total needed time is [ 43*)21( ttntt +++ ].
    Since there exists a priori model of the object, the
planning strategy may run offline and t3 is eliminated from
the above equation. Assuming that t1 and t2 are constants
and t4 is proportional to the path length, the task time
becomes κct lnTTT ++= *)21(cos .
    It is obvious that reducing the number of viewpoints
will improve the vision perception behavior. Therefore, the
objective is to take lowest traveling cost Tcost through the
planned viewpoints. In fact, if both the object model and
the robot environment are specified, the length of shortest
path of taking views is not varying very much and the
traveling cost is just proportional to the number of
viewpoints. Hence the objective becomes to minimize the
number of viewpoints. An optimal solution of sensor
placement contains the least number of viewpoints and the
corresponding graph has a lowest order. This is determined
by HGA in the next section.

3. Determination of Optimal Topology

3.1 HGA Representation
    Hierarchical GA is used to determine the optimal
topology of sensor placements which contain minimal
viewpoints with highest accuracy and satisfy all possible
constraints. The hierarchical chromosome can be regarded
as the DNA that consists of the parametric genes. In this
paper, parametric genes (Vi) mean the sensor poses and
optical settings and control genes (ci) mean the topology of
viewpoints. To indicate the activation of the control gene,
an integer “1” is assigned for each control gene that is
being enabled where “0” is for turning off. When “1” is
signaled, the associated parameter genes due to that
particular active control gene are activated in the lower
level structure. However, the inactive genes always exist
within the chromosome even when “0” appears.
    For the sensor placement problem, a chromosome in
GA represents a group of viewpoints with specific
topology. ),,,,,,,,( dfazyxVi γβα=  represents a

variable viewpoint, where Rzyx ∈,, , ],[,, ππγβα −∈ ,

],[ maxmin aaa ∈ , ],[ maxmin fff ∈ , and ],[ maxmin ddd ∈ ,

and the corresponding }1,0{=ic  represents a control gene
which is a binary variable.

Viewpoint
- Vertex (V3)

Fig. 2  A topology of viewpoint plan

Robot path
- Edge (Ei)

 V2

 V1

 V4 Edge weight
- Cost wi,j
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3.2 Plan Evaluation
    In this paper, a plan of sensor placements is evaluated
by a min-max criterion, which includes three objectives
and a fitness evaluation formula.
    The order of a graph G is equivalent to the number of
occurrences of “1” in the control level genes. To plan a
group of viewpoints with minimum order of the topology,
the first objective is represented as:

Objective 1: minimize ∑
=

=
max

1
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n

i
icGo .                (9)

    Assume that the accuracy of vision inspection is
proportional to the surface resolution acquired by vision
sensor and consider there are m features to be acquired,
so the second objective is to improve the average
accuracy, i.e.

Objective 2: maximize ∑
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m
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where wimage is the length of a feature on the sensor image.
    On the other hand, an admissible viewpoint is subject to
9 constraints in sensor placement space, i.e. resolution, in-
focus, field of view, visibility, viewing angle, overlap,
occlusion, contrast, and reachability. We set up a penalty
scheme to handle these constraints such that invalid
chromosomes become low performers in the population.
The constrained problem is then transformed to an
unconstrained condition by associating the penalty with all
the constraint violations. We use a vector of penalty
coefficients to combine the nine constraints:
ΚΚ = ),,,,,,,,( 987654321 δδδδδδδδδ .         (11)
    Define a binary function

      




=
 violatedis constraint the

satisfied is constraint the
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iϕ              (12)

and construct another vector of constraints:

Q(l, V)= ),,,,,,,,( 987654321 ϕϕϕϕϕϕϕϕϕ ,        (13)
where l is an object feature and V is a viewpoint.
    Therefore the third objective is to minimize the total
penalties for the constraints:

Objective 3: minimize TQKpenalty ⋅= .          (14)
    If there are m features and n viewpoints, the average
penalty of a viewpoint topology is:
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    Finally, we comprise the penalty scheme with the two
objective functions and the fitness function is derived:

Fitness: f(G)= |)|max( max Kbna +⋅+⋅ l

                         TQK
F
b

Goa ⋅−−×−
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,          (16)

where ∑
=

=
m

i
iKK

1

|| , |)|max( max Kbna +⋅+⋅ l  is the

maximum possible value that ensures positive fitness,

maxl is maximum possible resolution, and a and b are two

scaling factors.

3.3 Evolutionary Computing
    According to the characteristics of sensor placement
problem, the following genetic parameters and operations
are suggested:
(a) Chromosome length:

2n, where n stands for maximum viewpoints,
(b) Crossover method:

control level genes: one-point crossover if n<10, two-
point crossover if n>=10; probability of crossover

25.0=cp ;
parametric level genes: Heuristic crossover with
ratio=0.8. (Because the parameters of sensor pose and
optical settings are real numbers.)

(c) Mutation method:
control level genes: bit-flap mutation; probability of
mutation 01.0=mp

parametric level genes: ),( σµφ+= gg  where φ is

Gaussian distributed function, µ and σ are the mean
and variance, respectively.

(d) Selection method: Roulette-Wheel selection method;
(e) Replacement: Steady State without duplicates;
(f) Population size: 30-100, based on the length of

chromosome;
(g) Initial population: randomly generated.

4. Determination of a Shortest Path
    For giving an efficient plan, a shortest path must be
found through the above-determined optimal viewpoints.
Define the edge weight connecting two vertices in the
sensor placement graph to be ),( ji VVw , which is a nearest

distance for the robot to move the sensor from point Vi to
Vj.
    Obviously a sensor placement graph satisfies the
triangle inequality, i.e.

},{\)(),,(),(),( jikjkkiji VVGVVVVwVVwVVw ∈∀+≤ ,

where the “=” comes into truth if the position of Vk is
on the path lij and the orientation of Vk is a middle angle
between Ωi and Ωj.
    Here assumes that the robot should resume to its initial
state after finishing the vision task. Given a specified
graph, now another fundamental task is to find an optimal
closed chain that is the shortest (or approximately shortest)
one of all possible chains.
    Because a sensor placement graph G is a finite,
connected, and complete, the optimal closed chain is the
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optimal Hamilton cycle. Furthermore a complete graph
must contain Hamilton cycles, i.e. there exists cycles
which contain all the vertices once. In graph theory, it has
been proved that if G is complete and satisfies triangle
inequality, the optimal chain C” in a connected and
weighted graph G” is corresponding to an optimal cycle C
in its complete and weighted graph G. That is,

)()"(" CwCwandCC =↔ , where )(Xw  means the
length of chain or cycle X.
    To plan a sequence of robot operations or to find an
optimal Hamilton cycle, we have to decompose Gn into the
union of some edge-disjoint Hamilton cycles. There are

total n vertices and )1(
2
1

)( −=∂ nnG  edges in the graph

Gn, and a Hamilton cycle C must contains n edges too. Let
a Hamilton cycle be a sequence of vertices: C=(x1, x2, …,
xn) where ],1[),(, niGVxixjxi ∈∈≠ . The problem might
be solved by enumerating all possible Hamilton cycles Ci

in the graph, by comparing their sum weighs w(Ci), and
then finding out the smallest one cost=min[w(Ci)].

However, there are total )!1(
2
1

)( −= nCo  Hamilton

cycles. When n is a large number, it will bring

unacceptable computations. e.g. 16106)( ×=Co  when
n=20. It is a non-deterministic polynomial complete
(NPC) problem in graph theory and must be solved by
approximation algorithm.
    This paper uses an approximation algorithm developed
by Christofides. The procedures of this algorithm for
finding an optimal Hamilton cycle is described as:
(a) Construct the distance matrix W from graph (G, w).
(b) Find the smallest tree T in W using Prim algorithm
(c) Find the odd degree set V in T and calculate the perfect

matching M of smallest weighs in G’=G[V] using
Edmonds-Johnson algorithm.

(d) Find an Euler circuit C0=(x1, x2, x3, …, xn) in
G*=T+M using Fleury algorithm.

(e) Start at x1 and go along C0, remove each multi-
occurrence vertex from C0 except for the last x1 and
finally form a Hamilton cycle C of graph G and it is
just the approximated optimal cycle.

    The resulted Hamilton cycle is an approximation
solution. It has been proven that the error ratio doesn’t
exceed 0.5 even in worst case. That is, if L0 is the optimal
solution (sum of weighs) and L is the approximation
solution by Christofides algorithm, i.e. 5.1/1 0 ≤≤ LL .

5. Experiments

5.1 Task Specification and System Setup
    In this paper the experiments are carried out by
computer simulations. Fig. 3 shows a CAD model used for
examples of 3-D inspection. The part size is 300mm ×

150mm × 180mm. There are total 14 surfaces. The vision
task is to ensure full visibility of the part (13 surfaces)
except for the bottom surface because it is on the
conveyor. Constrained viewing angle is ±45° and
resolution is 0.1mm/pixel. Assume there is no overlap
constraint and a viewpoint outside the object is considered
reachable to the robot.

Fig. 3  The model of the object to be inspected

    The essential components of the vision system are: a
pair of CCD-cameras with the image resolution of 1024 by
1024, a 50mm lens, an one-point light source, a PC for
image processing and HGA evolutionary computing,
suitable software, a monitor to show the worked up
images, a robot hand-eye system for moving the object
around the object, a controller that executes the commands
output from the computer, etc.
    The vision sensor is a parallel stereo pair with the
baseline about b=200mm. Assume the optical parameters
(f, a) of the sensor are fixed but d can be adjusted
dynamically. So there are total three fixed parameters (b, f,
a) of the stereo pair and the corresponding values of these
parameters are calibrated firstly.

5.2 Computing the Optimal Placement Topology
    With the specified object model, the optimal solution of
sensor placements was determined off-line using HGA. In
our experiments, the maximum viewpoints was set to
nmax=120. Beside some optical parameters of vision sensor
are not variable, the self-rotation angle ω of stereo pair is
also not considered. So there are only two parameters
related to the sensor orientation, i.e. θ and ϕ based on
sphere coordinate system and the orientation can be
expressed as a unit direction vector:

),,( kji
vvvv

zyxPd = , where

θϕ coscos=x , θϕ sincos=y , and ϕsin=z .

    The dimension of a viewpoint vector is reduced to be 6-
dimensional Vi=( x, y, z, θ, ϕ, d) where θ∈[-π, π], ϕ∈[-π/2,
π/2] are entries of unit direction vector, in which each
entry is represented as a 4-byte float value. The population
size is set to 50. All other genetic parameters and
operations are adopted using the default settings
introduced in section 3.3.
    The evolutionary computing was then carried out and
the complete condition is based on fitness stability.
Usually after hundreds of thousands of generations, a
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solution was obtained with order n=33 and some of the
viewpoints are illustrated in Table 1.

5.3 Computing a Shortest Path
    We first need to compute the distance matrix Dm={dij}
where dij is the distance between point Vi and Vj. The result
is illustrated in Table 2. An approximation optimal
Hamilton circle was determined by Christofides algorithm:
    Lshortest= 75040, through (V25, V27, V14, V17, V11, V8, V10,
V15, V31, V16, V21, V3, V9, V18, V1, V29, V28, V22, V26, V23,
V7, V32, V5, V4, V2, V20, V13, V12, V30, V6, V33, V24, V19,
V25).

Table 1.  Some of the 33 viewpoints planed

x y z θ ϕ d
V1 -90.7 -271.5 426.7 0.85 -0.87 58.33
V2 438.2 87.0 1307.9 -2.85 -1.34 52.31
V3 640.9 -27.4 402.8 3.09 -0.69 55.84
V4 804.3 980.0 313.2 -2.16 -0.26 52.74
V5 1058.6 759.0 800.1 -2.45 -0.59 52.78
V6 -903.8 616.4 597.3 -0.53 -0.46 52.37
V7 1047.0 128.4 565.4 -3.00 -0.56 53.69
V8 -249.8 -1348 115.0 1.28 -0.08 52.18
V9 399.3 -276.4 428.0 2.30 -0.85 57.10
… … … … … … …
V32 1116.0 92.2 45.8 -3.05 -0.05 53.25
V33 232.4 -209.4 1307.9 1.95 -1.40 52.71

Table 2. Distance matrix of the viewpoints

V1 V2 V3 V4 V5 V6 … V27 V28 V29 V30 V31 V32 V33

V1 0 8167 4128 7919 8052 7349 4459 3223 2496 4743 8059 7773 6694
V2 8167 0 7869 2741 2015 4093 4425 5573 6129 5200 7712 3043 5172
V3 4128 7869 0 7132 7299 6701 3881 4857 4747 4753 4506 7295 4416
V4 7919 2741 7132 0 1034 3453 4554 5027 5815 4291 6575 2021 5913
V5 8052 2015 7299 1034 0 3942 4568 5221 5918 4765 6810 1947 5836
V6 7349 4093 6701 3453 3942 0 3705 4887 5750 2921 6167 4855 4245
V7 7250 2554 6920 2222 1742 4814 4489 4608 5172 4667 6963 1203 6264
V8 7355 6311 5748 6056 6384 3986 4427 6509 6976 4076 3846 6446 3289
…
V32 7773 3043 7295 2021 1947 4855 5106 5201 5820 4830 6591 0 6770
V33 6694 5172 4416 5913 5836 4245 2974 5729 6047 4385 3610 6770 0

6. Conclusions
    In this paper, a plan of sensor placements is evaluated
with three conditions, i.e. low order, high precision, and
satisfaction of all constraints.
    To achieve optimal topology of viewpoints, it is difficult
to use conventional mathematical methods. As a numerical
optimizer, HGA generates the solutions that are not
mathematically oriented possesses an intrinsic flexibility
and the freedom to choose desirable optima according to
task specifications. In the case of that the order of the
sensor placement graph is greater then 15, it becomes
impossible to enumerate all possible robot paths for
obtaining a shortest one. Hence, an approximation
algorithm is used to determine the viewing sequence.
Christofides algorithm is an effect one that can guarantee
no more than 0.5 error even in worst case.
    Compared with previous approaches, this paper
provides a robust and complete solution for inspection
tasks, including viewpoint decision and robot operation
sequence planning.
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